

Verbundwerkstoffe im (Nutz-)Fahrzeugbau

Web-Seminar CVC-Südwest 26. August 2025 Prof. Dr.-Ing. Joachim Hausmann

Our Mission: Fibre Reinforced Plastic Composites

Reinforcing Fibres...

- ✓ extremely high strength
- √ high stiffness
- adjustable orientation for lightweight design and elastic tailoring

- customized physical and chemical properties
- multifunctionality through doping with additives

✓ very low density

high moulding complexity

....impregnated with a....

...Polymer Matrix

multiple formability and weldability (thermoplastics)

✓ corrosion and ageing resistant

www.thefutureiscomposite.com

Benefits of Composite Materials for Commercial Vehicles

© Leibniz-Institut für Verbundwerkstoffe GmbH

Program Areas and Fields of Competence

BMBF-Project "MultiKab": Lightweight by Multi-Material-Design

• Target: Development of weight-optimized cabins for commercial

vehicles by multi-material design

- Load specific material selection:
 - Thermoset and thermoplastic matrix
 - foamed, non-reinforced and fiber-reinforced plastics
 - Metallic elements
- Generic components:
 - Farm vehicle: Cabin roof
 - Truck door

Multi-Material Design

- Load-bearing structures made from fiberreinforced thermoplastics (GF-PC/PBT)
- Anisotropic fiber orientation
- Sandwich design with PUR-foam as core
- Metallic inserts for load introduction
- Component of fiber-reinforced PUR manufactured by infusion process
 - → high design flexibility
- Class A surface by additional PUR surface layer

Benefits of Multi-Material Design

- Weight reduction of 30% along with same costs as metal component
- Manufacturing process suitable for serial production
- Reduced assembly effort by integration of functional elements
- Better crash behavior

Composite Materials for Electric Motor Applications, e.g.:

- BMBF-Project "GroAx"
- EU CleanSky JTI "HiTemComFil"

Composite Materials for Electric Motor Applications

- Intention for usage of composite materials:
 - Lower weight
 - Higher rotational speed
 - Lower mass inertia
 - Electro-magnetic permeability
 - Electric insulation

- → Reinforcing rings for rotors
- → Casings
- → Split cases

BMBF-Project "GroAx"

 Target: Development of a rotor casing which supports the magnets and is suitable for efficient serial production

 Solution: Filament wound GFRP rotor with limited radial deformation and optimized load introduction

Project "HiTemComFil" funded by EU CleanSky JTI – Eco Design ITD.

Application: Rotor for aircraft ventilation system

Targets:

- Maximize rotational speed by hoop reinforcement
- Temperature resistance up to 240°C
- Avoid cracking of magnets
- limit radial deformation
- Automated winding process

Solution:

- Hoop winding with stiff fibers and temperature resistant PMI resin
- Control of internal stresses

Innovative Solutions for Hydrogen Storage in Transport Applications

Key Topic "Energy"

Innovation Example: Lightweight Hydrogen Storage System

für Wirtschaft

und Klimaschutz

Targets

- Lightweight hydrogen tank
- Storage of gaseous hydrogen (700 bar)
- Optimum utilization of installation space

Solution

- ✓ Tubular CFRP-reinforced tank
- Layer by layer load introduction
- Adapted winding process

Lightweight hydrogen tank demonstrator

Advantages of the Novel Pressure Vessel Design

- Contains of helical and circumferential layers
- Small vessel diameters are difficult to be winded
- 0°-Layers are difficult to realize
- Need for pre-manufactured liners
- Only small inspection holes possible

- Contains only of 0°-/90°-Layers
- ⇒ Usage as a load-bearing structure possible
- Realisation of small vessel diameters (no turning zone)
- ⇒ Better usage of design space
- Large inspection holes possible
- Usage of a tube as a liner

Patented IVW Load Introduction for Aviation Struts

Weight: 910 g incl. metallic inserts

Laminate thickness: 2.5 mm

Length: 540 mm

Diameter: 66 mm

Load bearing: ca. 250 kN

⇒ "Layer wise press fit"

⇒ Homogeneous load distribution with low stress peaks

⇒ Suitable for tension and compression rods

Adaption to Hydrogen Pressure Vessel Design

Burst Pressure Testing of Second Generation

- Inner cone designed as massive part
- Circumferential layers reinforced
- Ca. 1,600 bar achieved (target 1,575 bar)

© Leibniz-Institut für Verbundwerkstoffe GmbH

Application: Medium-Duty Commercial Vehicle

R&D-project BMWK - WaVe (2021-2024)

Partner: Daimler Truck, Hydac ...

© Daimler Truck AG

Source: https://wave.cvc-suedwest.com/

Remarks

Utilization as "conformable tank"

 Target: Provide enough hydrogen for a complete work day (today with conventional type 4 tanks only a half work day

Supported by:

on the basis of a decision by the German Bundestag

Other Examples

Key Topic "Energy"Innovation Example: Low Friction & Wear Tribo Compounds

Key Topic "Production and Circularity"

Fundamental Research Example: Recycled Carbon Fibers

Targets

- ✓ Re-use of carbon fibers for the original purpose
- ✓ High strength and stiffness
- ✓ Complex shaped structures

M. Duhovic, P. Mitschang, D. Bhattacharyya: Modelling approach for the prediction of stitch influence during woven fabric draping. Composites - Part A: Applied Science and Manufacturing, Vol 42, Issue 8, (2011)

Solution

- ✓ Staple fiber yarns
- ✓ Stabilized with thermoplastic fibers
- ✓ Stamp forming technology

C. Goergen, D. Schommer, M. Duhovic, P. Mitschang: Deep drawing of organic sheets made of hybrid recycled carbon and thermoplastic polyamide 6 staple fiber yarns. Journal of Thermoplastic Composite Materials (2018)

- Composite materials, i.e. fiber-reinforced polymers provide:
 - light-weight solutions
 - multi-functionality
 - reduced energy consumption
 - corrosion resistance
- Challenges are:
 - profound knowledge on composite materials of development staff
 - cost efficiency
 - serial production technology
 - circularity

... solutions exist and are awaiting for applications!

Thank you for your attention!

Contact details:

joachim.hausmann@leibniz-ivw.de Tel: +49 (0)631 2017 301 www.leibniz-ivw.de

© IVW

This document is confidential. The information contained is the property of the institute.

This document may only be reproduced or disclosed to other parties with the consent of Leibniz-Institut für Verbundwerkstoffe GmbH. Transmission or disclosure does not constitute any intellectual property rights. The information contained does not constitute an offer.

Composite Aneurysm Clip

www.thefutureiscomposite.com

© Leibniz-Institut für Verbundwerkstoffe GmbH