

HS Trier – Umwelt-Campus Birkenfeld Forschungsschwerpunkte

Forschungsprofil der HS Trier

Angewandtes Stoffstrommanagement Life Sciences: Medizin-, Pharmaund Biotechnologie

Intelligente
Technologien für
Nachhaltige
Entwicklung

Matthias Vette-Steinkamp

Umweltgerechte Produktionsverfahren

Refabrikation

Am UCB existieren zahlreiche Forschungsaktivitäten rund um Themen Industrie 4.0.

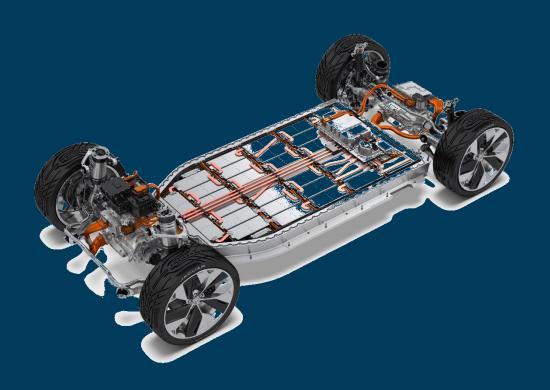
Showroom und Coworkingspace

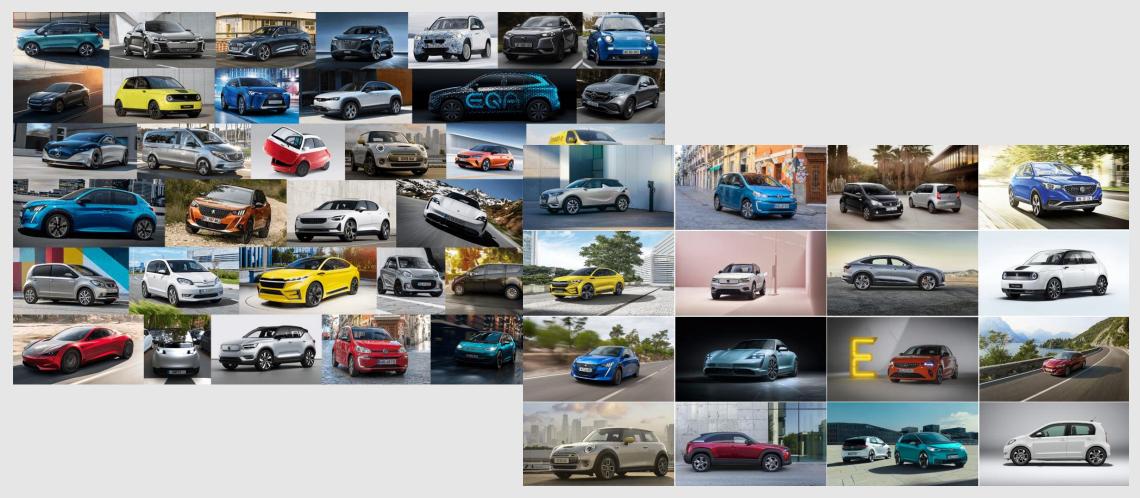
Showroom

- Aktiver Forschungsbetrieb
- Demonstration neuer Technologien und Forschungsergebnisse
- Seminar- und Weiterbildungsangebote für Unternehmen und Studenten
- Hands-on-Technologies

Coworkingspace:

- Zusammenarbeit interdisziplinärer und internationaler Forschungsteams
- Entwicklung industrienaher und industrieller Applikationen
- Technologietransfer




Technologische Aspekte des Recyclings von Batterien und Batteriezellen

Neue Elektroautos

Bilder: https://autorevue.at/

Unsere Thesen zur aktuellen Entwicklung des Automobilmarktes: Konservative Prognose

- Der Verkauf von Elektrofahrzeugen wird in den nächsten Jahren stark zunehmen. Bei allen OEMs werden Produktionskapazitäten aufgebaut:
 - Tesla: 0,5 bis 2 Mio Fahrzeuge pro Jahr (Werk Berlin)¹
 - VW: 0,3 Mio Fahrzeuge pro Jahr (Werk Zwickau)
- Gegenwärtig wird eine umfangreiche Produktionsinfrastruktur für Autobatterien aufgebaut²
 - Microvast
 - Deutsche Accumotive
 - S-Volt

Bilder: https://autorevue.at/

- Heutige Batterien haben einen automobilen Lebenszyklus von ca. 8 12 Jahren³
- Es gibt noch keine wirtschaftliche und skalierbare Geschäftsmodelle für den zweiten Lebenszyklus von Batterien⁴

Ganz gleich, ob man für oder gegen Elektroautos ist. Ein neuer Markt entsteht jetzt.

⁴⁾ Fraunhofer ISI: Batterien für Elektroautos: Faktencheck und Handlungsbedarf

https://teslamag.de/news/zahlen-verwirrung-tesla-zwei-millionen-elektroautos-pro-jahr-giga-berlin-29221

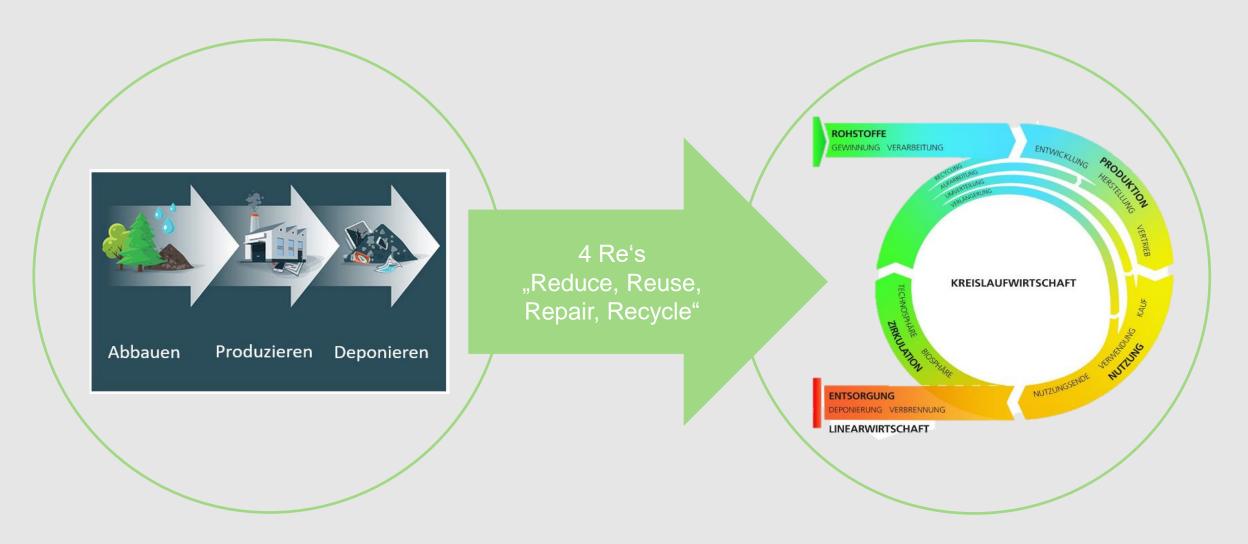

²⁾ https://www.auto-motor-und-sport.de/tech-zukunft/alternative-antriebe/batteriezellen-fertigung-deutschland-wo-elektroauto-akkus-entstehen/

https://ecomento.de/ratgeber/wie-hoch-ist-die-lebensdauer-von-batterien-elektroautos/

Was passiert nach dem Ende der Garantie mit der Batterie?

Umweltschäden durch lineare Wirtschaftsweise

- Lineare Produktlebenszyklen vermüllen:
 - > Land
 - > See
 - Untergrund
 - ➤ Luft/Atmosphäre
- Energetisch verwertetes Material verursacht Sondermüll, der in Salzstollen eingelagert wird


"Dieses Foto" von Unbekannter Autor ist lizenziert gemäß CC BY-SA

→ Gesellschaftlicher und politischer Druck auf Unternehmen

Transformation der Wirtschaftsform

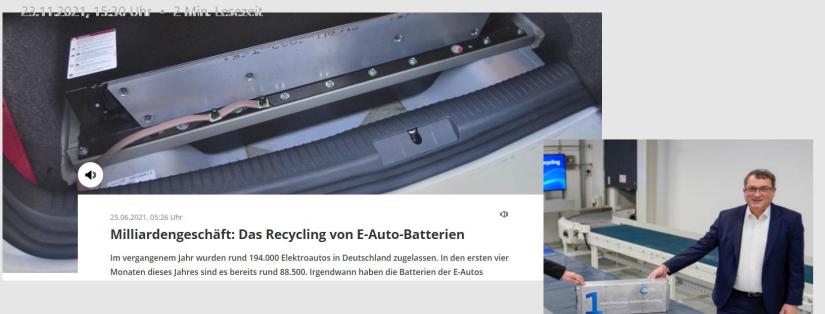
WirtschaftsWoche

Tesla denkt jetzt schon ans **Recycling seiner Autos**

Bild: imago images

Der US-Autobauer Tesla hat angekündigt, die meisten Autos künftig mit einem neuen Batterietyp auszurüsten. Diese Akkus sind günstiger, umweltfreundlicher und sicherer. Und: Sie lassen sich leicht recyceln, was in Zukunft bei Elektroautos immer wichtiger wird.

Volkswagen Group News


Pressemitteilung

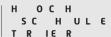
Aus alt mach neu: Volkswagen Group Components startet Batterie-Recycling

Daimler macht es offiziell: Batterie-Recycling soll 2023 starten

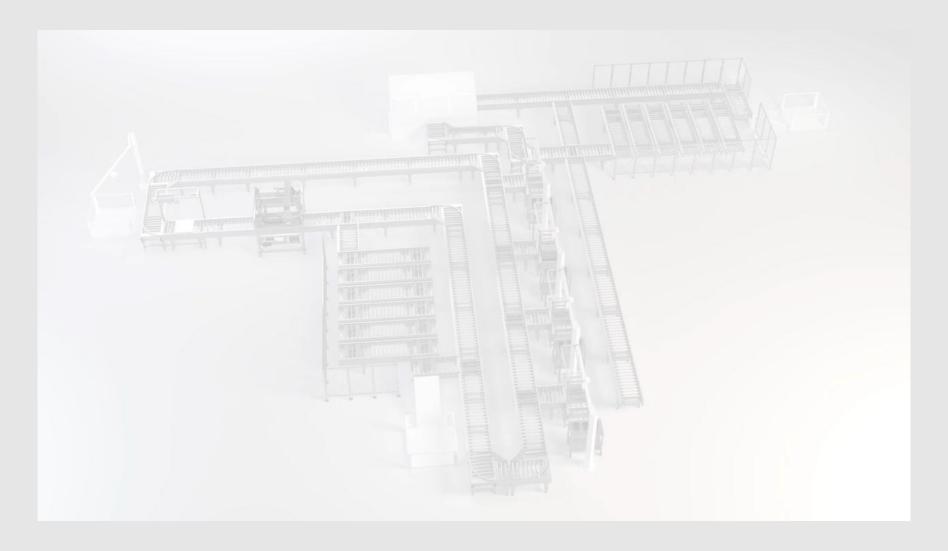
In Kuppenheim in Baden-Württemberg will der Autohersteller die Recyclingmöglichkeiten von Lithium-Ionen-Batterien verbessern, um möglichst viele Rohstoffe zu extrahieren.

Von Elisabeth Urban

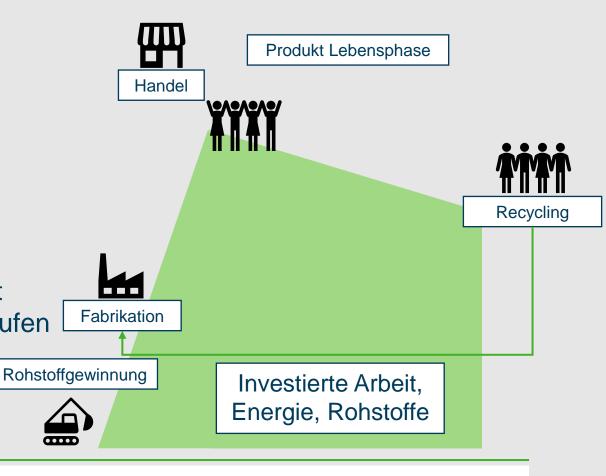
OEMs auf dem Weg zu geschlossenen Kreisläufen?



Lösungsansatz BASF Battery Recycling



Automatisiertes Zerlegen der Batterie für das Recycling


Lineare Wirtschaft, teurer Müll

Investieren von:

- Arbeit
- Energie
- Rohstoffen

Unternehmen verdienen an einmaligem Verkauf

- → Wettbewerb fordert minimal notwendige Qualität
- →Begrenzte Lebenszeit führt zu häufigeren Verkäufen

Volkswirtschaftlich wird viel Kapital deponiert

Warten auf Schrott

Der Überlebenskampf der Batterierecycler

Zahlreiche Batterierecycling-Fabriken sollen bald ans Netz gehen. Doch in den kommenden zehn Jahren werden sie wohl kaum gebraucht – es gibt schlicht noch nicht genügend Batterieschrott. Nicht alle am Markt werden das überleben.

Von Anna Driftschröer

13.10.2022, 07.00 Uhr

https://www.manager-magazin.de/unternehmen/energie/recycling-von-e-auto-batterien-wie-das-warten-auf-schrott-zum-ueberlebenskampf-fuer-batterie-recycler-wird

Lösungsansatz Refabrikation

Refabrikationsprozesse Hochvoltbatterie

Wie ist die aktuelle Situation in den Werkstätten?

Organisation:

Die Mechaniker müssen als Elektrofachkräfte ausgebildet sein.

 Die Schulungskurse werden derzeit von den OEMs angeboten, vorerst jedoch nur für Vertragswerkstätten.

■ Die Werkstätten benötigen neue Ausrüstung (Hochspannungsausrüstung). ✓

Personliche Schutzausrüstung

Spezielle Werkzeuge

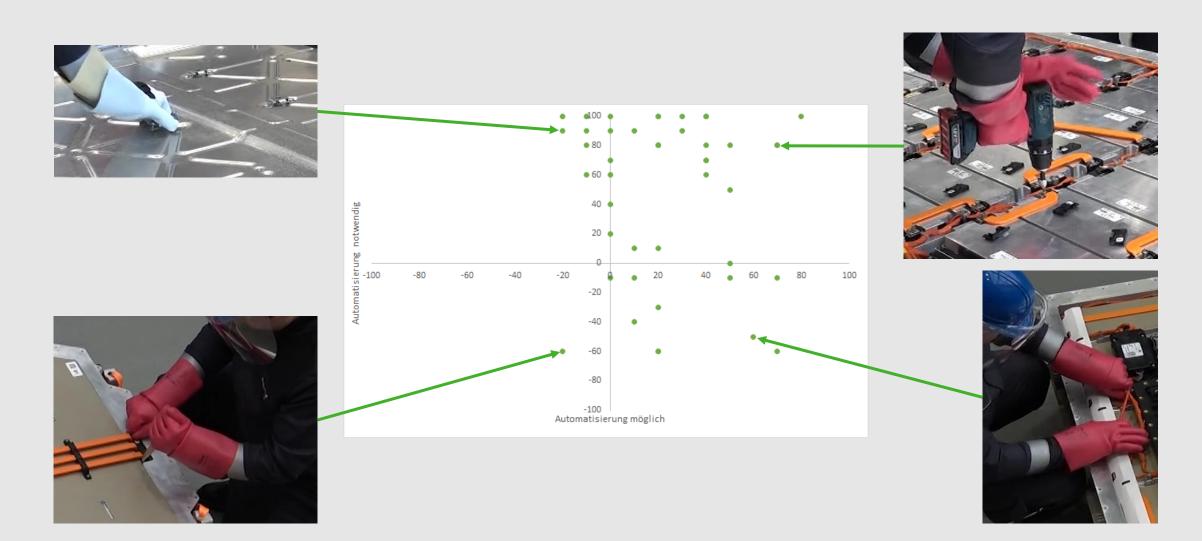
Neue Verfahren und Zubehör (z.B. Schlösser)

Software

Wie ist die aktuelle Situation in den Werkstätten?

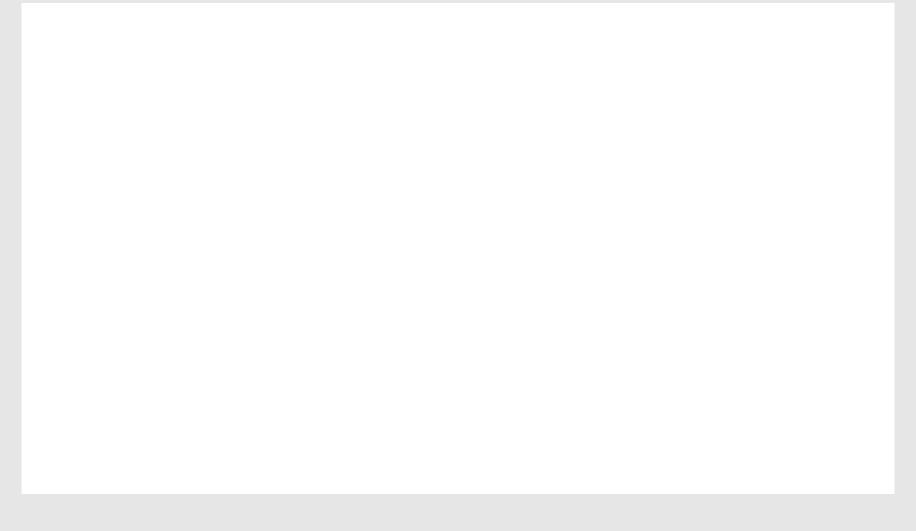
Probleme aus dem täglichen Leben:

- Wie kann ich die Batterie (90kWh) entladen?
 - Zubereitung von 6.300 Tassen Kaffee
 - Dies entspricht der Verbrennung von etwa 10l Benzin
 - → Rückführung der Energie
- Sollen die Batteriesysteme vor Ort repariert oder vollständig ersetzt werden?
- → Wir brauchen Fachkräfte.
- Was mache ich danach mit den Batteriezellen?
 Wer sammelt die Batterien?
- → Wir brauchen Logistik-Dienstleister.



Wie gehen wir mit Fahrzeugen um, die einen Unfall hatten?

Übersicht Arbeitsschritte und das Potential der Automatisierung


Herausforderungen der Demontage

- Verschiedene Hersteller, Generationen und Varianten
- → Digitaler Zwilling zur Ableitung von Steuerungsfunktionen
- Unterschiedliche Demontageumfänge und Reihenfolgen, Fachkräftemangel
- → Assistenzsysteme
- Kreislauffähige Produktgestaltung
- → Überarbeitung von Steckkontakten sowie Fügetechnologien
- Wirtschaftlichkeit am Hochlohnstandort Deutschland
- → Bestimmung des optimalen Automatisierungsgrades für jede Variante
- → Wandlungsfähige Anlagenstrukturen und neue Organisationsformen
- Neue Geschäftsmodelle
- → Reverse Logistik
- → As a Service

Neues Geschäftsmodell as a Service: Dezentrale Lösungen für Werkstätten und Verwerter

Umweltgerechte Produktionsverfahren

Prof. Dr.-Ing. Matthias Vette-Steinkamp

Umwelt-Campus Birkenfeld Trier University of Applied Sciences Gebäude 9925 | Raum 09 Campusallee | 55768 Hoppstädten-Weiersbach Tel. +49 6782 / 17 - 1881 m.vette-steinkamp@umwelt-campus.de www.umwelt-campus.de

www.hochschule-trier.de

